IR-100 hYflow Basic Valve

The BERMAD basic Model IR-100 hYflow diaphragm actuated, hydraulically operated valve is at the leading edge of control valve design. It combines simple and reliable construction with superior performance, while at the same time being virtually free of the typical limitations associated with standard control valves.

BERMAD’s automatic water control valves are designed for vertical or horizontal installation and are available in sizes of 2", 2½", 3", 4" & 6"; DN: 50, 65, 80, 100 & 150.

The Model IR-100 hYflow, made from industrial durable glass-filled nylon, is engineered to meet rough service conditions with high chemical and cavitation resistance.

The hYflow ‘Y’ valve body design includes a full bore seat with unobstructed flow path, free of any in-line ribs, supporting cage, or shafts. Its unitized Flexible Super Travel (FST) diaphragm and guided plug provide a significantly ‘look through’ passage from end to end resulting in ultra-high flow capacity with minimal pressure loss. The combination of a long travel guided valve plug, peripherally supported diaphragm, and replaceable valve seal provides:

- No chattering or slamming closed
- Accurate and stable regulation with smooth motion
- Low operating pressure requirements
- No diaphragm erosion and distortion
- Diaphragm and spring fully meet the valve’s operating pressure range requirements.

Designed for service under a wide range of pressure and flow conditions, from dripping to maximum flow, the IR-100 hYflow excels at being a user-friendly control valve:

- Simple design with few parts guarantees easy in-line inspection and service.
- Adaptable on-site to a wide range of end connection types and sizes.
- Articulated flange connections isolate the valve from pipeline bending and pressure stresses.
On-Off Modes

3-Way Control
Line pressure applied to the control chamber of the valve creates a hydraulic force that moves the valve to the closed position and provides drip tight sealing. Discharging pressure from the control chamber to the atmosphere causes the line pressure under the plug to open the valve.

2-Way Internal Control
Line pressure enters the control chamber through the internal restriction. The closed solenoid causes pressure to accumulate in the control chamber, thereby shutting the valve. Opening the Solenoid releases more flow from the control chamber than the restriction can allow in. This causes pressure in the control chamber to drop, allowing the valve to open.

2-Way Modulating Modes, Pressure Reducing Pilot

Modulating to Close
Line pressure enters the control chamber through the internal restriction. The pilot controls outflow from the control chamber. Throttling when it senses a pressure rise, it causes pressure to accumulate in the control chamber, thereby forcing the valve to modulate closed.

Modulating to Open
The pilot modulates open when it senses a pressure drop, releasing more flow from the control chamber than the restriction can allow in. This causes the accumulated pressure in the control chamber to drop and the valve modulates open.

Zero Flow Position
When demand drops to zero, downstream pressure begins to rise as the flow enters a closed line. The pilot closes, initiating the valve’s irreversible closing process, eventually causing it to seal drip tight.
3-Way Control Modes, Pressure Reducing

Fully Open Position
When upstream pressure drops, the pilot blocks the supply pressure port and opens the drain port, venting the control chamber to the atmosphere. This fully opens the valve, minimizing head loss.

Modulating to Close
The pilot switches upon pressure rise, blocking the drain port and opening the supply pressure port. This pressurizes the control chamber, forcing the valve to modulate closed.

Locked Position
When sensed pressure is equal to setting, the pilot blocks both the drain and the supply pressure ports. This locks the pressure in the control chamber, freezing valve opening in its last position until conditions change.
[1] **Cover Ring**

The cover ring fastens valve cover to body, stiffening and strengthening the valve body, enabling simple maintenance. A cover ring key is available.

[2] **"Click-In" Bracket**

For all BERMAD plastic accessories.

[3] **Valve Cover**

The cover’s strong construction meets rough service conditions. Optional cover types (3”; DN80 and smaller valves) are capable of accepting a Flow Stem, a Flow Stem + Position Indicator, and a 2-Way Solenoid (2W-N1 Electric Type).

[4] **Auxiliary Closing Spring**

One single high grade stainless steel spring provides a wide operation range, ensuring low opening pressure and secured closing.

[5] **Plug Assembly**

The unitized Flexible Super Travel (FST) plug assembly combines a long travel guided valve plug, peripherally supported diaphragm, and replaceable diaphragm and valve seal. The diaphragm fully meets the valve’s operating pressure range requirements.

[5.1] Diaphragm Holder
[5.2] Diaphragm
[5.3] Plug
[5.4] Plug Seal

Glass-filled nylon construction meets rough service conditions with high chemical and cavitation resistance. End-to-end “look-through” design and full bore seat with unobstructed flow path, free of any in-line ribs, supporting cage, or shafts, enables ultra-high flow capacity with minimal pressure loss.

[7] **End Connections**

Adaptable on-site to a wide range of end connection types and sizes:

[7.1] Flanges: Plastic or metal “Corona” with elongated slots enable meeting diverse flange standards ISO, ANSI and JIS.
[7.2] Flange adaptor external thread
[7.3] Internal threads

[8] **Flange Adapter**

Articulated flange connections isolate the valve from line bending and pressure stresses.

[9] **Valve Legs**

Stabilizing the valve and serve also as mounting brackets.
BERMAD Irrigation

Configuration Options

2"; DN50

2 1/4"; DN65 - Male Thread (for PVC Adapters)

3"; DN80

3"; DN 80 Angle

6"; DN 150 "Y-Boxer" - Flanged

6"; DN 150 "Y-Boxer" - Grooved (Vic)

End Connection Options

BSPT; NPT Female Thread
2"; DN50

BSPF Male Thread, (for PVC Adapters)
2 1/4"; DN65

Union PVC adaptor
2 1/2"; DN65

BSPT; NPT Female Thread
3"; DN80

Plastic Flange
3"; DN80

Plastic Flange
3"L & 4"; DN: 80L & 100

Metal Flange
3"L & 4"; DN: 80L & 100

PVC Adaptor
3"; DN80

BERMAD Inc. Tel: 800-821-6825, Fax: 714-666-2533
bermad@bermadusa.com • www.bermad.com

The information herein is subject to change without notice. BERMAD shall not be held liable for any errors. All rights reserved. © Copyright by BERMAD.
Dimensions &Weights

<table>
<thead>
<tr>
<th>Size</th>
<th>2"</th>
<th>21/2"</th>
<th>3"</th>
<th>3"L</th>
<th>4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>2" NPT</td>
<td>G 21/2 BSPF</td>
<td>3" NPT</td>
<td>Universal Flanges</td>
<td>3" NPT</td>
</tr>
<tr>
<td></td>
<td>Metal</td>
<td>Plastic</td>
<td>Metal</td>
<td>Plastic</td>
<td>Metal</td>
</tr>
<tr>
<td>L (inch)</td>
<td>9 1/16</td>
<td>9 1/16</td>
<td>11 3/4</td>
<td>12 1/2</td>
<td>12 1/2</td>
</tr>
<tr>
<td>H (inch)</td>
<td>7 5/16</td>
<td>7 5/16</td>
<td>10 1/16</td>
<td>10 1/16</td>
<td>9 7/16</td>
</tr>
<tr>
<td>h (inch)</td>
<td>1 9/16</td>
<td>1 9/16</td>
<td>3 15/16</td>
<td>3 15/16</td>
<td>2 3/4</td>
</tr>
<tr>
<td>W (inch)</td>
<td>5 5/16</td>
<td>5 5/16</td>
<td>7 1/4</td>
<td>7 1/4</td>
<td>7 1/2</td>
</tr>
<tr>
<td>CCDV (gal)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>2.97</td>
<td>3.08</td>
<td>3.62</td>
<td>9.68</td>
<td>6.60</td>
</tr>
</tbody>
</table>

CCDV = Control Chamber Displacement Volume

Quick “Horn” Outlet Connection

<table>
<thead>
<tr>
<th>Size</th>
<th>3"</th>
<th>6"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>Angle</td>
<td>Y “Boxer”</td>
</tr>
<tr>
<td>End Connections</td>
<td>3" NPT</td>
<td>Grooved (Vic)</td>
</tr>
<tr>
<td></td>
<td>L (inch)</td>
<td>7 3/8</td>
</tr>
<tr>
<td></td>
<td>L1 (inch)</td>
<td>5 1/8</td>
</tr>
<tr>
<td></td>
<td>H (inch)</td>
<td>9 5/8</td>
</tr>
<tr>
<td></td>
<td>h (inch)</td>
<td>4 1/8</td>
</tr>
<tr>
<td></td>
<td>W (inch)</td>
<td>5 3/8</td>
</tr>
<tr>
<td>CCDV (gal)</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>3.52</td>
<td>17.71</td>
</tr>
</tbody>
</table>

CCDV = Control Chamber Displacement Volume

*Reinforced Plastic Flanges

Technical Specifications

Available Sizes: 2", 21/2", 3", 3"L, 4" & 6"

Connections Standard:
- Threaded: Female NPT: 2", 3" & 3"L
 - Male BSP-F: 21/2"
- Flanged: 3", 3"L, 4" & 6"
 - Plastic or metal “Corona” with elongated slots enable meeting diverse flange standards ISO PN10, ANSI 125, JIS 10K

Pressure Rating: 145 psi
Operating Pressure Range: 5-145 psi
Temperature: Water up to 140°F

Standard Materials:
- Body, Cover and Plug: Glass-Filled Nylon
- Diaphragm: NR, Nylon Fabric Reinforced
- Seals: NR
- Spring: Stainless Steel
- Cover bolts (2", 21/2" & 3" valves): Stainless Steel
Flow Chart

Y Pattern 2-6”, Angle Pattern 3”
2-Way circuit “Added Head Loss” (for “V” below 6.5 f/s): 4.5 psi

T Pattern 3”
2-Way circuit “Added Head Loss” (for “V” below 6.5 f/s): 4.5 psi

Flow Properties

Y Pattern

<table>
<thead>
<tr>
<th>Size</th>
<th>2”</th>
<th>2½”</th>
<th>3”</th>
<th>3”L</th>
<th>4”</th>
<th>6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cv</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>230</td>
<td>230</td>
<td>460</td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
<td>2.8</td>
<td>6.4</td>
<td>1.6</td>
<td>3.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Leq (ft)</td>
<td>8.0</td>
<td>29.8</td>
<td>84.2</td>
<td>21.1</td>
<td>64.3</td>
<td>122.0</td>
</tr>
</tbody>
</table>

Valve flow coefficient, Cv or Kv

\[
Cv(Kv) = Q \sqrt{\frac{Gf}{\Delta P}}
\]

Where:
- \(Kv\) = Valve flow coefficient (flow in m³/h at 1bar Diff. Press.)
- \(Cv\) = Valve flow coefficient (flow in gpm at Diff. Press. 1psi)
- \(Q\) = Flow rate (gpm; m³/h)
- \(\Delta P\) = Differential pressure (psi; bar)
- \(Gf\) = Liquid specific gravity (Water = 1.0)

\[
Cv = 1.155 Kw
\]

Flow resistance or Head loss coefficient, \(K\)

\[
K = \frac{2g}{V^2} \Delta H
\]

Where:
- \(K\) = Flow resistance or Head loss coefficient (dimensionless)
- \(\Delta H\) = Head loss (feet; m)
- \(V\) = Nominal size flow velocity (feet/sec; m/sec.)
- \(g\) = Acceleration of gravity (32.18 feet/sec²; 9.81 m/sec²)

A Pattern

T Pattern 3”

<table>
<thead>
<tr>
<th>Size</th>
<th>3”</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Side</td>
<td>115</td>
</tr>
<tr>
<td>Two Sides</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>3”</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Side</td>
<td>6.4</td>
</tr>
<tr>
<td>Two Sides</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Equivalent Pipe Length, Leq

\[
Leq = Lk \cdot D
\]

Where:
- \(Leq\) = Equivalent nominal pipe length (feet; m)
- \(Lk\) = Equivalent length coefficient for turbulent flow in clean commercial steel pipe (SCH 40)
- \(D\) = Nominal pipe diameter (feet; m)

Note:
The \(Leq\) values given are for general consideration only.